Belief functions induced by multimodal probability density functions, an application to the search and rescue problem
نویسندگان
چکیده
Abstract. In this paper, we propose a new method to generate a continuous belief functions from a multimodal probability distribution function defined over a continuous domain. We generalize Smets’ approach in the sense that focal elements of the resulting continuous belief function can be disjoint sets of the extended real space of dimension n. We then derive the continuous belief function from multimodal probability density functions using the least commitment principle. We illustrate the approach on two examples of probability density functions (unimodal and multimodal). On a case study of Search And Rescue (SAR), we extend the traditional probabilistic framework of search theory to continuous belief functions theory. We propose a new optimization criterion to allocate the search effort as well as a new rule to update the information about the lost object location in this latter framework. We finally compare the allocation of the search effort using this alternative uncertainty representation to the traditional probabilistic representation.
منابع مشابه
Optimal power flow based on gray wolf optimization algorithm using probability density functions extraction considering wind power uncertainty
In recent years, utilization of the renewable based power plants has become widespread in the power systems. One of the most widely used renewable based power plants is wind power plants. Due to the utilization of wind energy to generate electricity, wind turbines have not emitted any environmental pollution. Thus, in addition to economic benefits, utilization of these power plants is of great ...
متن کاملbelief function and the transferable belief model
Beliefs are the result of uncertainty. Sometimes uncertainty is because of a random process and sometimes the result of lack of information. In the past, the only solution in situations of uncertainty has been the probability theory. But the past few decades, various theories of other variables and systems are put forward for the systems with no adequate and accurate information. One of these a...
متن کاملA continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملOptimal Scheduled Unit Commitment Considering Wind Uncertainty Using Cuckoo Search Algorithm
In this paper, a new method to review the role of wind units as an energy-producer in the scheduling problem of unit commitment is presented. Today, renewable energy sources due to lack of environmental pollution, absence of dependence on fossil fuels, and consequently a very low marginal cost, have been receiving considerable attention in power system. But these sources are associated with unc...
متن کاملEffects of Probability Function on the Performance of Stochastic Programming
Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RAIRO - Operations Research
دوره 44 شماره
صفحات -
تاریخ انتشار 2010